2021-03-05

理解C#泛型运作原理

前言

 我们都知道泛型在C#的重要性,泛型是OOP语言中三大特征的多态的最重要的体现,几乎泛型撑起了整个.NET框架,在讲泛型之前,我们可以抛出一个问题,我们现在需要一个可扩容的数组类,且满足所有类型,不管是值类型还是引用类型,那么在没有用泛型方法实现,如何实现?

一.泛型之前的故事

 我们肯定会想到用object来作为类型参数,因为在C#中,所有类型都是基于Object类型的。因此Object是所有类型的最基类,那么我们的可扩容数组类如下:

 public class ArrayExpandable {  private object?[] _items = null;  private int _defaultCapacity = 4;  private int _size;  public object? this[int index]  {   get   {    if (index < 0 || index >= _size)      throw new ArgumentOutOfRangeException(nameof(index));    return _items[index];   }   set   {    if (index < 0 || index >= _size)      throw new ArgumentOutOfRangeException(nameof(index));    _items[index] = value;   }  }  public int Capacity  {   get => _items.Length;   set   {    if (value < _size)    {     throw new ArgumentOutOfRangeException(nameof(value));    }    if (value != _items.Length)    {     if (value > 0)     {      object[] newItems = new object[value];      if (_size > 0)      {       Array.Copy(_items, newItems, _size);      }      _items = newItems;     }     else     {      _items = new object[_defaultCapacity];     }    }   } } public int Count => _size; public ArrayExpandable() {  _items = new object?[0]; } public ArrayExpandable(int capacity) {  _items = new object?[capacity]; } public void Add(object? value) {  //数组元素为0或者数组元素容量满  if (_size == _items.Length) EnsuresCapacity(_size + 1);  _items[_size] = value;  _size++; } private void EnsuresCapacity(int size) {  if (_items.Length < size)  {   int newCapacity = _items.Length == 0 ? _defaultCapacity : _items.Length * 2;   if (newCapacity < size) newCapacity = size;   Capacity = newCapacity;  } }

然后我们来验证下:

var arrayStr = new ArrayExpandable();var strs = new string[] { "ryzen", "reed", "wymen" };for (int i = 0; i < strs.Length; i++){  arrayStr.Add(strs[i]);  string value = (string)arrayStr[i];//改为int value = (int)arrayStr[i] 运行时报错  Console.WriteLine(value);}Console.WriteLine($"Now {nameof(arrayStr)} Capacity:{arrayStr.Capacity}");var array = new ArrayExpandable();for (int i = 0; i < 5; i++){  array.Add(i);  int value = (int)array[i];  Console.WriteLine(value);}Console.WriteLine($"Now {nameof(array)} Capacity:{array.Capacity}");

输出:

ryzenreedwymengavinNow arrayStr Capacity:401234Now array Capacity:8

 貌似输出结果是正确的,能够动态进行扩容,同样的支持值类型Structint32和引用类型的字符串,但是其实这里会发现一些问题,那就是

  1. 引用类型string进行了类型转换的验证
  2. 值类型int32进行了装箱和拆箱操作,同时进行类型转换类型的检验
  3. 发生的这一切都是在运行时的,假如类型转换错误,得在运行时才能报错

大致执行模型如下:

引用类型:

值类型:

 那么有没有一种方法能够避免上面遇到的三种问题呢?在借鉴了cpp的模板和java的泛型经验,在C#2.0的时候推出了更适合.NET体系下的泛型

二.用泛型实现

public class ArrayExpandable<T>{  private T[] _items;  private int _defaultCapacity = 4;  private int _size;  public T this[int index]  {   get   {    if (index < 0 || index >= _size)     throw new ArgumentOutOfRangeException(nameof(index));    return _items[index];   }   set   {    if (index < 0 || index >= _size)     throw new ArgumentOutOfRangeException(nameof(index));    _items[index] = value;   }  }  public int Capacity  {   get => _items.Length;   set   {    if (value < _size)    {     throw new ArgumentOutOfRangeException(nameof(value));    }    if (value != _items.Length)    {     if (value > 0)     {      T[] newItems = new T[value];      if (_size > 0)      {       Array.Copy(_items, newItems, _size);      }      _items = newItems;     }     else     {      _items = new T[_defaultCapacity];     }    }   }  }  public int Count => _size;  public ArrayExpandable()  {   _items = new T[0];  }  public ArrayExpandable(int capacity)  {   _items = new T[capacity];  }  public void Add(T value)  {   //数组元素为0或者数组元素容量满   if (_size == _items.Length) EnsuresCapacity(_size + 1);   _items[_size] = value;   _size++;  }  private void EnsuresCapacity(int size)  {   if (_items.Length < size)   {    int newCapacity = _items.Length == 0 ? _defaultCapacity : _items.Length * 2;    if (newCapacity < size) newCapacity = size;    Capacity = newCapacity;   }  } }

那么测试代码则改写为如下:

var arrayStr = new ArrayExpandable<string>();var strs = new string[] { "ryzen", "reed", "wymen", "gavin" };for (int i = 0; i < strs.Length; i++){  arrayStr.Add(strs[i]);  string value = arrayStr[i];//改为int value = arrayStr[i] 编译报错  Console.WriteLine(value);}Console.WriteLine($"Now {nameof(arrayStr)} Capacity:{arrayStr.Capacity}");var array = new ArrayExpandable<int>();for (int i = 0; i < 5; i++){  array.Add(i);  int value = array[i];  Console.WriteLine(value);}Console.WriteLine($"Now {nameof(array)} Capacity:{array.Capacity}");

输出:

ryzenreedwymengavinNow arrayStr Capacity:401234Now array Capacity:8

我们通过截取部分ArrayExpandable<T>的IL查看其本质是个啥:

//声明类.class public auto ansi beforefieldinit MetaTest.ArrayExpandable`1<T>  extends [System.Runtime]System.Object{ .custom instance void [System.Runtime]System.Reflection.DefaultMemberAttribute::.ctor(string) = ( 01 00 04 49 74 65 6D 00 00 )      } //Add方法.method public hidebysig instance void Add(!T 'value') cil managed{ // 代码大小  69 (0x45) .maxstack 3 .locals init (bool V_0) IL_0000: nop IL_0001: ldarg.0 IL_0002: ldfld  int32 class MetaTest.ArrayExpandable`1<!T>::_size IL_0007: ldarg.0 IL_0008: ldfld  !0[] class MetaTest.ArrayExpandable`1<!T>::_items IL_000d: ldlen IL_000e: conv.i4 IL_000f: ceq IL_0011: stloc.0 IL_0012: ldloc.0 IL_0013: brfalse.s IL_0024 IL_0015: ldarg.0 IL_0016: ldarg.0 IL_0017: ldfld  int32 class MetaTest.ArrayExpandable`1<!T>::_size IL_001c: ldc.i4.1 IL_001d: add IL_001e: call  instance void class MetaTest.ArrayExpandable`1<!T>::EnsuresCapacity(int32) IL_0023: nop IL_0024: ldarg.0 IL_0025: ldfld  !0[] class MetaTest.ArrayExpandable`1<!T>::_items IL_002a: ldarg.0 IL_002b: ldfld  int32 class MetaTest.ArrayExpandable`1<!T>::_size IL_0030: ldarg.1 IL_0031: stelem  !T IL_0036: ldarg.0 IL_0037: ldarg.0 IL_0038: ldfld  int32 class MetaTest.ArrayExpandable`1<!T>::_size IL_003d: ldc.i4.1 IL_003e: add IL_003f: stfld  int32 class MetaTest.ArrayExpandable`1<!T>::_size IL_0044: ret} // end of method ArrayExpandable`1::Add

 原来定义的时候就是用了个T作为占位符,起一个模板的作用,我们对其实例化类型参数的时候,补足那个占位符,我们可以在编译期就知道了其类型,且不用在运行时进行类型检测,而我们也可以对比ArrayExpandableArrayExpandable<T>在类型为值类型中的IL,查看是否进行拆箱和装箱操作,以下为IL截取部分:

ArrayExpandable:

 IL_0084: newobj  instance void GenericSample.ArrayExpandable::.ctor() IL_0089: stloc.2 IL_008a: ldc.i4.0 IL_008b: stloc.s V_6 IL_008d: br.s  IL_00bc IL_008f: nop IL_0090: ldloc.2 IL_0091: ldloc.s V_6 IL_0093: box  [System.Runtime]System.Int32 //box为装箱操作 IL_0098: callvirt instance void GenericSample.ArrayExpandable::Add(object) IL_009d: nop IL_009e: ldloc.2 IL_009f: ldloc.s V_6 IL_00a1: callvirt instance object GenericSample.ArrayExpandable::get_Item(int32) IL_00a6: unbox.any [System.Runtime]System.Int32 //unbox为拆箱操作

ArrayExpandable:

 IL_007f: newobj  instance void class GenericSample.ArrayExpandable`1<int32>::.ctor() IL_0084: stloc.2 IL_0085: ldc.i4.0 IL_0086: stloc.s V_6 IL_0088: br.s  IL_00ad IL_008a: nop IL_008b: ldloc.2 IL_008c: ldloc.s V_6 IL_008e: callvirt instance void class GenericSample.ArrayExpandable`1<int32>::Add(!0) IL_0093: nop IL_0094: ldloc.2 IL_0095: ldloc.s V_6 IL_0097: callvirt instance !0 class GenericSample.ArrayExpandable`1<int32>::get_Item(int32)

 我们从IL也能看的出来,ArrayExpandable<T>T作为一个类型参数,在编译后在IL已经确定了其类型,因此当然也就不存在装拆箱的情况,在编译期的时候IDE能够检测类型,因此也就不用在运行时进行类型检测,但并不代表不能通过运行时检测类型(可通过is和as),还能通过反射体现出泛型的灵活性,后面会讲到

 其实有了解ArrayListList的朋友就知道,ArrayExpandableArrayExpandable<T>其实现大致就是和它们一样,只是简化了很多的版本,我们这里可以通过 BenchmarkDotNet 来测试其性能对比,代码如下:

 [SimpleJob(RuntimeMoniker.NetCoreApp31,baseline:true)] [SimpleJob(RuntimeMoniker.NetCoreApp50)] [MemoryDiagnoser] public class TestClass {  [Benchmark]  public void EnumAE_ValueType()  {   ArrayExpandable array = new ArrayExpandable();   for (int i = 0; i < 10000; i++)   {    array.Add(i);//装箱    int value = (int)array[i];//拆箱   }   array = null;//确保进行垃圾回收  }  [Benchmark]  public void EnumAE_RefType()  {   ArrayExpandable array = new ArrayExpandable();   for (int i = 0; i < 10000; i++)   {    array.Add("r");    string value = (string)array[i];   }   array = null;//确保进行垃圾回收  }  [Benchmark]  public void EnumAE_Gen_ValueType()  {   ArrayExpandable<int> array = new ArrayExpandable<int>();   for (int i = 0; i < 10000; i++)   {    array.Add(i);    int value = array[i];   }   array = null;//确保进行垃圾回收;  }  [Benchmark]  public void EnumAE_Gen_RefType()  {   ArrayExpandable<string> array = new ArrayExpandable<string>();   for (int i = 0; i < 10000; i++)   {    array.Add("r");    string value = array[i];   }   array = null;//确保进行垃圾回收;  }  [Benchmark]  public void EnumList_ValueType()  {   List<int> array = new List<int>();   for (int i = 0; i < 10000; i++)   {    array.Add(i);    int value = array[i];   }   array = null;//确保进行垃圾回收;  }  [Benchmark]  public void EnumList_RefType()  {   List<string> array = new List<string>();   for (int i = 0; i < 10000; i++)   {    array.Add("r");    string value = array[i];   }   array = null;//确保进行垃圾回收;  }  [Benchmark(Baseline =true)]  public void EnumAraayList_valueType()  {   ArrayList array = new ArrayList();   for (int i = 0; i < 10000; i++)   {    array.Add(i);    int value = (int)array[i];   }   array = null;//确保进行垃圾回收;  }  [Benchmark]  public void EnumAraayList_RefType()  {   ArrayList array = new ArrayList();   for (int i = 0; i < 10000; i++)   {    array.Add("r");    string value = (string)array[i];   }   array = null;//确保进行垃圾回收;  } }

 我还加入了.NETCore3.1和.NET5的对比,且以.NETCore3.1的EnumAraayList_valueType方法为基准,性能测试结果如下:

用更直观的柱形图来呈现:

 我们能看到在这里List的性能在引用类型和值类型中都是所以当中是最好的,不管是执行时间、GC次数,分配的内存空间大小,都是最优的,同时.NET5在几乎所有的方法中性能都是优于.NETCore3.1,这里还提一句,我实现的ArrayExpandableArrayExpandable<T>性能都差于ArrayListList,我还没实现IList和各种方法,只能说句dotnet基金会牛逼

三.泛型的多态性

多态的声明

类、结构、接口、方法、和委托可以声明一个或者多个类型参数,我们直接看代码:

interface IFoo<InterfaceT>{ void InterfaceMenthod(InterfaceT interfaceT);}class Foo<ClassT, ClassT1>: IFoo<StringBuilder>{ public ClassT1 Field;  public delegate void MyDelegate<DelegateT>(DelegateT delegateT); public void DelegateMenthod<DelegateT>(DelegateT delegateT, MyDelegate<DelegateT> myDelegate) {  myDelegate(delegateT); } public static string operator +(Foo<ClassT, ClassT1> foo,string s) {  return $"{s}:{foo.GetType().Name}"; } public List<ClassT> Property{ get; set; } public ClassT1 Property1 { get; set; } public ClassT this[int index] => Property[index];//没判断越界 public Foo(List<ClassT> classT, ClassT1 classT1) {  Property = classT;  Property1 = classT1;  Field = classT1;  Console.WriteLine($"构造函数:parameter1 type:{Property.GetType().Name},parameter2 type:{Property1.GetType().Name}"); }  //方法声明了多个新的类型参数 public void Method<MenthodT, MenthodT1>(MenthodT menthodT, MenthodT1 menthodT1) {  Console.WriteLine($"Method<MenthodT, MenthodT1>:{(menthodT.GetType().Name)}:{menthodT.ToString()}," +  $"{menthodT1.GetType().Name}:{menthodT1.ToString()}"); } public void Method(ClassT classT) {  Console.WriteLine($"{nameof(Method)}:{classT.GetType().Name}:classT?.ToString()"); } public void InterfaceMenthod(StringBuilder interfaceT) {   Console.WriteLine(interfaceT.ToString()); }}

控制台测试代码:

static void Main(string[] args){  Test();  Console.ReadLine();}static void Test(){  var list = new List<int>() { 1, 2, 3, 4 };  var foo = new Foo<int, string>(list, "ryzen");  var index = 0;  Console.WriteLine($"索引:索引{index}的值:{foo[index]}");   Console.WriteLine($"Filed:{foo.Field}");  foo.Method(2333);  foo.Method<DateTime, long>(DateTime.Now, 2021);  foo.DelegateMenthod<string>("this is a delegate", DelegateMenthod);  foo.InterfaceMenthod(new StringBuilder().Append("InterfaceMenthod:this is a interfaceMthod"));  Console.WriteLine(foo+"重载+运算符");}static void DelegateMenthod(string str){  Console.WriteLine($"{nameof(DelegateMenthod)}:{str}");}

输出如下:

构造函数:parameter1 type:List`1,parameter2 type:String索引:索引0的值:1Filed:ryzenMethod:Int32:classT?.ToString()Method<MenthodT, MenthodT1>:DateTime:2021/03/02 11:45:40,Int64:2021DelegateMenthod:this is a delegateInterfaceMenthod:this is a interfaceMthod重载+运算符:Foo`2

我们通过例子可以看到的是:

  • 类(结构也可以),接口,委托,方法都可以声明一个或多个类型参数,体现了声明的多态性
  • 类的函数成员:属性,字段,索引,构造器,运算符只能引入类声明的类型参数,不能够声明,唯有方法这一函数成员具备声明和引用类型参数两种功能,由于具备声明功能,因此可以声明和委托一样的类型参数并且引用它,这也体现了方法的多态性

多态的继承

父类和实现类或接口的接口都可以是实例化类型,直接看代码:

interface IFooBase<IBaseT>{}interface IFoo<InterfaceT>: IFooBase<string>{ void InterfaceMenthod(InterfaceT interfaceT);}class FooBase<ClassT>{}class Foo<ClassT, ClassT1>: FooBase<ClassT>,IFoo<StringBuilder>{}

我们可以通过例子看出:

  • 由于Foo的基类FooBase定义的和Foo有着共享的类型参数ClassT,因此可以在继承的时候不实例化类型
  • FooIFoo接口没定义相同的类型参数,因此可以在继承的时候实例化出接口的类型参数StringBuild出来
  • IFooIFooBase没定义相同的类型参数,因此可以在继承的时候实例化出接口的类型参数string出来
  • 上述都体现出继承的多态性

多态的递归

我们定义如下一个类和一个方法,且不会报错:

 class D<T> { } class C<T> : D<C<C<T>>>  {   void Foo()  {   var foo = new C<C<T>>();   Console.WriteLine(foo.ToString());  } }

因为T能在实例化的时候确定其类型,因此也支持这种循环套用自己的类和方法的定义

四.泛型的约束

where的约束

我们先上代码:

 class FooBase{ } class Foo : FooBase  {   }  class someClass<T,K> where T:struct where K :FooBase,new() { } static void TestConstraint() {  var someClass = new someClass<int, Foo>();//通过编译  //var someClass = new someClass<string, Foo>();//编译失败,string不是struct类型  //var someClass = new someClass<string, long>();//编译失败,long不是FooBase类型 } 

再改动下Foo类:

class Foo : FooBase { public Foo(string str) { }}static void TestConstraint(){ var someClass = new someClass<int, Foo>();//编译失败,因为new()约束必须类含有一个无参构造器,可以再给Foo类加上个无参构造器就能编译通过}

 我们可以看到,通过where语句,可以对类型参数进行约束,而且一个类型参数支持多个约束条件(例如K),使其在实例化类型参数的时候,必须按照约束的条件对应实例符合条件的类型,而where条件约束的作用就是起在编译期约束类型参数的作用

out和in的约束

 说到outin之前,我们可以说下协变和逆变,在C#中,只有泛型接口和泛型委托可以支持协变和逆变

协变

我们先看下代码:

class FooBase{ }class Foo : FooBase {}interface IBar<T> { T GetValue(T t);}class Bar<T> : IBar<T>{ public T GetValue(T t) {  return t; }}static void Test(){ var foo = new Foo(); FooBase fooBase = foo;//编译成功 IBar<Foo> bar = new Bar<Foo>(); IBar<FooBase> bar1 = bar;//编译失败 }

 这时候你可能会有点奇怪,为啥那段代码会编译失败,明明Foo类可以隐式转为FooBase,但作为泛型接口类型参数实例化却并不能呢?使用out约束泛型接口IBar的T,那段代码就会编译正常,但是会引出另外一段编译报错:

interface IBar<out T> { T GetValue(string str);//编译成功 //T GetValue(T t);//编译失败 T不能作为形参输入,用out约束T支持协变,T可以作为返回值输出 }IBar<Foo> bar = new Bar<Foo>();IBar<FooBase> bar1 = bar;//编译正常

因此我们可以得出以下结论:

  • 由于Foo继承FooBase,本身子类Foo包含着父类允许访问的成员,因此能隐式转换父类,这是类型安全的转换,因此叫协变
  • 在为泛型接口用out标识其类型参数支持协变后,约束其方法的返回值和属性的Get(本质也是个返回值的方法)才能引用所声明的类型参数,也就是作为输出值,用out很明显的突出了这一意思

而支持迭代的泛型接口IEnumerable也是这么定义的:

 public interface IEnumerable<out T> : IEnumerable {  new IEnumerator<T> GetEnumerator(); }

逆变

我们将上面代码改下:

class FooBase{ }class Foo : FooBase {}interface IBar<T> { T GetValue(T t);}class Bar<T> : IBar<T>{ public T GetValue(T t) {  return t; }}static void Test1(){ var fooBase = new FooBase(); Foo foo = (Foo)fooBase;//编译通过,运行时报错 IBar<FooBase> bar = new Bar<FooBase>(); IBar<Foo> bar1 = (IBar<Foo>)bar;//编译通过,运行时报错}

我们再改动下IBar,发现出现另外一处编译失败

interface IBar<in T> { void GetValue(T t);//编译成功 //T GetValue(T t);//编译失败 T不能作为返回值输出,用in约束T支持逆变,T可以作为返回值输出} IBar<FooBase> bar = new Bar<FooBase>(); IBar<Foo> bar1 = (IBar<Foo>)bar;//编译通过,运行时不报错 IBar<Foo> bar1 = bar;//编译通过,运行时不报错

因此我们可以得出以下结论:

  • 由于FooBaseFoo的父类,并不包含子类的自由的成员,转为为子类Foo是类型不安全的,因此在运行时强式转换的报错了,但编译期是不能够确认的
  • 在为泛型接口用in标识其类型参数支持逆变后,in约束其接口成员不能将其作为返回值(输出值),我们会发现协变和逆变正是一对反义词
  • 这里提一句,值类型是不支持协变和逆变的

同样的泛型委托Action就是个逆变的例子:

public delegate void Action<in T>(T obj);

五.泛型的反射

我们先来看看以下代码:

static void Main(string[] args){ var lsInt = new ArrayExpandable<int>(); lsInt.Add(1); var lsStr = new ArrayExpandable<string>(); lsStr.Add("ryzen"); var lsStr1 = new ArrayExpandable<string>(); lsStr.Add("ryzen");}

然后通过ildasm查看其IL,开启视图-》显示标记值,查看Main方法:

void Main(string[] args) cil managed{ .entrypoint // 代码大小  52 (0x34) .maxstack 2 .locals /*11000001*/ init (class MetaTest.ArrayExpandable`1/*02000003*/<int32> V_0,   class MetaTest.ArrayExpandable`1/*02000003*/<string> V_1,   class MetaTest.ArrayExpandable`1/*02000003*/<string> V_2) IL_0000: nop IL_0001: newobj  instance void class MetaTest.ArrayExpandable`1/*02000003*/<int32>/*1B000001*/::.ctor() /* 0A00000C */ IL_0006: stloc.0 IL_0007: ldloc.0 IL_0008: ldc.i4.1 IL_0009: callvirt instance void class MetaTest.ArrayExpandable`1/*02000003*/<int32>/*1B000001*/::Add(!0) /* 0A00000D */ IL_000e: nop IL_000f: newobj  instance void class MetaTest.ArrayExpandable`1/*02000003*/<string>/*1B000002*/::.ctor() /* 0A00000E */ IL_0014: stloc.1 IL_0015: ldloc.1 IL_0016: ldstr  "ryzen" /* 70000001 */ IL_001b: callvirt instance void class MetaTest.ArrayExpandable`1/*02000003*/<string>/*1B000002*/::Add(!0) /* 0A00000F */ IL_0020: nop IL_0021: newobj  instance void class MetaTest.ArrayExpandable`1/*02000003*/<string>/*1B000002*/::.ctor() /* 0A00000E */ IL_0026: stloc.2 IL_0027: ldloc.1 IL_0028: ldstr  "ryzen" /* 70000001 */ IL_002d: callvirt instance void class MetaTest.ArrayExpandable`1/*02000003*/<string>/*1B000002*/::Add(!0) /* 0A00000F */ IL_0032: nop IL_0033: ret} // end of method Program::Main

打开元数据表将上面所涉及到的元数据定义表和类型规格表列出:

metainfo:

-----------定义部分TypeDef #2 (02000003)-------------------------------------------------------	TypDefName: MetaTest.ArrayExpandable`1 (02000003)	Flags  : [Public] [AutoLayout] [Class] [AnsiClass] [BeforeFieldInit] (00100001)	Extends : 0100000C [TypeRef] System.Object	1 Generic Parameters		(0) GenericParamToken : (2a000001) Name : T flags: 00000000 Owner: 02000003		Method #8 (0600000a) 	-------------------------------------------------------		MethodName: Add (0600000A)		Flags  : [Public] [HideBySig] [ReuseSlot] (00000086)		RVA  : 0x000021f4		ImplFlags : [IL] [Managed] (00000000)		CallCnvntn: [DEFAULT]		hasThis 		ReturnType: Void		1 Arguments			Argument #1: Var!0		1 Parameters		(1) ParamToken : (08000007) Name : value flags: [none] (00000000)		------类型规格部分TypeSpec #1 (1b000001)-------------------------------------------------------	TypeSpec : GenericInst Class MetaTest.ArrayExpandable`1< I4> //14代表int32	MemberRef #1 (0a00000c)	-------------------------------------------------------		Member: (0a00000c) .ctor: 		CallCnvntn: [DEFAULT]		hasThis 		ReturnType: Void		No arguments.	MemberRef #2 (0a00000d)	-------------------------------------------------------		Member: (0a00000d) Add: 		CallCnvntn: [DEFAULT]		hasThis 		ReturnType: Void		1 Arguments			Argument #1: Var!0TypeSpec #2 (1b000002)-------------------------------------------------------	TypeSpec : GenericInst Class MetaTest.ArrayExpandable`1< String>	MemberRef #1 (0a00000e)	-------------------------------------------------------		Member: (0a00000e) .ctor: 		CallCnvntn: [DEFAULT]		hasThis 		ReturnType: Void		No arguments.	MemberRef #2 (0a00000f)	-------------------------------------------------------		Member: (0a00000f) Add: 		CallCnvntn: [DEFAULT]		hasThis 		ReturnType: Void		1 Arguments		Argument #1: Var!0

 这时候我们就可以看出,元数据为泛型类ArrayExpandable<T>定义一份定义表,生成两份规格,也就是当你实例化类型参数为intstring的时候,分别生成了两份规格代码,同时还发现以下的现象:

var lsInt = new ArrayExpandable<int>();//引用的是类型规格1b000001的成员0a00000c .ctor构造lsInt.Add(1);//引用的是类型规格1b000001的成员0a00000d Add var lsStr = new ArrayExpandable<string>();//引用的是类型规格1b000002的成员0a00000e .ctor构造lsStr.Add("ryzen");//引用的是类型规格1b000002的成员0a00000f Addvar lsStr1 = new ArrayExpandable<string>();//和lsStr一样lsStr.Add("ryzen");//和lsStr一样

 非常妙的是,当你实例化两个一样的类型参数string,是共享一份类型规格的,也就是同享一份本地代码,因此上面的代码在线程堆栈和托管堆的大致是这样的:

由于泛型也有元数据的存在,因此可以对其做反射:

Console.WriteLine($"-----------{nameof(lsInt)}---------------");Console.WriteLine($"{nameof(lsInt)} is generic?:{lsInt.GetType().IsGenericType}");Console.WriteLine($"Generic type:{lsInt.GetType().GetGenericArguments()[0].Name}");Console.WriteLine("---------Menthods:");foreach (var method in lsInt.GetType().GetMethods()){  Console.WriteLine(method.Name);}Console.WriteLine("---------Properties:");foreach (var property in lsInt.GetType().GetProperties()){  Console.WriteLine($"{property.PropertyType.ToString()}:{property.Name}");}Console.WriteLine($"\n-----------{nameof(lsStr)}---------------");Console.WriteLine($"{nameof(lsStr)} is generic?:{lsStr.GetType().IsGenericType}");Console.WriteLine($"Generic type:{lsStr.GetType().GetGenericArguments()[0].Name}");Console.WriteLine("---------Menthods:");foreach (var method in lsStr.GetType().GetMethods()){  Console.WriteLine(method.Name);}Console.WriteLine("---------Properties:");foreach (var property in lsStr.GetType().GetProperties()){  Console.WriteLine($"{property.PropertyType.ToString()}:{property.Name}");}

输出:

-----------lsInt---------------lsInt is generic?:TrueGeneric type:Int32---------Menthods:get_Itemset_Itemget_Capacityset_Capacityget_CountAddGetTypeToStringEqualsGetHashCode---------Properties:System.Int32:ItemSystem.Int32:CapacitySystem.Int32:Count-----------lsStr---------------lsStr is generic?:TrueGeneric type:String---------Menthods:get_Itemset_Itemget_Capacityset_Capacityget_CountAddGetTypeToStringEqualsGetHashCode---------Properties:System.String:ItemSystem.Int32:CapacitySystem.Int32:Count

六.总结

 泛型编程作为.NET体系中一个很重要的编程思想,主要有以下亮点:

  • 编译期确定类型,避免值类型的拆装箱和不必要的运行时类型检验,同样运行时也能通过isas进行类型检验
  • 通过约束进行对类型参数实例化的范围
  • 同时在IL层面,实例化相同类型参数的时候共享一份本地代码
  • 由于元数据的存在,也能在运行时进行反射,增强其灵活性

参考

Design and Implementation of Generics for the .NET Common Language Runtime

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/

《CLR Via C# 第四版》

《你必须知道的.NET(第二版)》









原文转载:http://www.shaoqun.com/a/605584.html

跨境电商:https://www.ikjzd.com/

tineye:https://www.ikjzd.com/w/448

csa:https://www.ikjzd.com/w/904


前言 我们都知道泛型在C#的重要性,泛型是OOP语言中三大特征的多态的最重要的体现,几乎泛型撑起了整个.NET框架,在讲泛型之前,我们可以抛出一个问题,我们现在需要一个可扩容的数组类,且满足所有类型,不管是值类型还是引用类型,那么在没有用泛型方法实现,如何实现?一.泛型之前的故事 我们肯定会想到用object来作为类型参数,因为在C#中,所有类型都是基于Object类型的。因此Object是所有类
立刻网:https://www.ikjzd.com/w/2323
dmm杂志:https://www.ikjzd.com/w/2026
欧麦:https://www.ikjzd.com/w/2085
口述:女友拒绝和好要求 我抛出分手账单:http://lady.shaoqun.com/m/a/68209.html
口述:异地恋 一到晚上男友就玩失踪情感异地恋情侣:http://lady.shaoqun.com/m/a/27133.html
空中云汇:https://www.ikjzd.com/w/2684

No comments:

Post a Comment